Section 2.2

The Constant Rule and the Power Rule: The derivative of a constant function is 0 . That is, if c is a real number, then

$$
\frac{d}{d x}[c]=0 .
$$

If n is a rational number, then the function $f(x)=x^{n}$ is differentiable and

$$
\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}
$$

For f to be differentiable at $x=0, n$ must be a number such that x^{n-1} is defined on an interval containing 0 .

1) Find the derivatives of the following functions:
a) $f(x)=-3$
b) $g(x)=x^{4}$
c) $h(x)=\sqrt[3]{x^{2}}$
d) $k(x)=\frac{1}{\sqrt[4]{x}}$
2) Find the equation of the tangent line to the graph of $f(x)=\sqrt{x}$ at $(4,2)$.

The Constant Multiple Rule: If f is a differentiable function and c is a real number, then $c f$ is also differentiable and $\frac{d}{d x}[c f(x)]=c f^{\prime}(x)$.
3) Find the derivatives of the following functions:
a) $f(x)=\frac{3}{x^{2}}$
b) $g(x)=\frac{2 x^{3}}{7}$
c) $h(x)=\frac{3 \sqrt{x}}{(2 x)^{2}}$

The Sum and Difference Rules: The sum (or difference) of two differentiable functions f and g is itself differentiable. Moreover, the derivative of $f+g$ (or $f-g$) is the sum (or difference) of the derivatives of f and g.

$$
\frac{d}{d x}[f(x) \pm g(x)]=f^{\prime}(x) \pm g^{\prime}(x)
$$

4) Find the derivatives of the following functions:
a) $f(x)=3 x^{3}-2 x^{2}+1$
b) $g(x)=4 \sqrt{x}-\frac{x^{2}}{3}+10 x$

Derivatives of Sine and Cosine Functions:

$$
\frac{d}{d x}[\sin x]=\cos x \quad \frac{d}{d x}[\cos x]=-\sin x
$$

5) Find the derivatives of the following functions:
a) $f(x)=3 \cos x$
b) $g(x)=-\frac{\sin x}{3}$
c) $h(x)=2 x^{3}-3 \cos x$

Velocity: If $s=s(t)$ is the position function for an object moving along a straight line, then the velocity of the object at time t is

$$
v(t)=\lim _{\Delta t \rightarrow 0} \frac{s(t+\Delta t)-s(t)}{\Delta t}=s^{\prime}(t)
$$

6) If a hammer is dropped on the surface of the moon from a height of 50 feet, its height s at time t is given by the position function

$$
s=-2.65 t^{2}+50
$$

where s is measured in feet and t is measured in seconds. Find the average velocity of the hammer over each of the following time intervals.
a) $[1,2]$
b) $[1,1.5]$
c) $[1,1.1]$
d) Find the instantaneous velocity of the hammer at $t=1$ (how fast is the hammer falling when exactly one second has passed?).
7) A cannonball is shot straight up from a cannon on a 24 foot tall platform. The position of the cannonball is given by

$$
s(t)=-16 t^{2}+92 t+24
$$

where s is measured in feet and t is measured in seconds.
a) When does the cannonball hit the ground?
b) What is the velocity of the cannonball when it hits the ground?

Homework for this section: Read the section and watch the videos/tutorials. Then do these problems in preparation for the quiz \#17, $24,29,35,46,55,57,67,95,98,115$

